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SUMMARY

Inferring the spatiotemporal distribution of slip during earthquakes remains a significant
challenge due to the high dimensionality and ill-posed nature of the inverse problem. As a result,
finite-source inversions typically rely on simplified assumptions. Moreover, in the absence of
ground-truth measurements, the performance of inversion methods can only be evaluated
through synthetic tests. Laboratory earthquakes offer a valuable alternative by providing
‘simulated real data’ and ground truth observations under controlled conditions, enabling a
more reliable evaluation of source inversion procedures. In this study, we present static and
quasi-static slip inversion results from data recorded during laboratory earthquakes. Each
event is instrumented with 20 accelerometers along the fault, and the recorded acceleration
data are used to invert for the slip history. We consider two different types of Green’s functions
(GF): simplistic GF assuming a homogeneous elastic half-space and realistic GF computed
by finite element modelling of the experimental setup. The inversion results are then compared
to direct observations of fault slip and rupture velocity obtained independently during the
experiments. Our results show that, regardless of the GF used, the inversions fit well with the
data and result in small formal uncertainties of model parameters. However, only the inversion
with realistic GF yields slip distributions consistent with the true fault slip measurements
and successfully recovers the distribution of rupture velocity along the fault. These findings
emphasize the critical role of GF selection in accurately resolving slip dynamics and highlight
an important distinction in Bayesian inversion: while posterior uncertainty quantification is
essential, it does not guarantee accuracy, especially if forward modelling uncertainties are
not properly accounted for. Thus, confidence in inversion results must be paired with careful
modelling choices to ensure physical reliability.

Key words: Bayesian inference; Finite element method; Inverse theory; Monte Carlo meth-
ods; Earthquake ground motions; Earthquake source observations.

inverse problem (A. Tarantola & B. Valette 1982). Therefore, our

I INTRODUCTION understanding of earthquake physics is limited by the data set used

Estimating the spatial and temporal evolution of slip during earth-
quakes is essential to understand the physics that controls the seis-
mic cycle (J.P. Avouac 2015; PM. Mai et al. 2016; Z. Duputel 2022).
The behaviour of faults is strongly influenced by their complex
structure and interactions with the surrounding environment. Faults
are not smooth or linear but rather rough, segmented and intricate
(Y. Ben-Zion & C.G. Sammis 2003), which affects their frictional
properties (C. Scholz 2002) and determines whether slip is seismic
or aseismic (R. Sibson 1989). Moreover, faults are not isolated; they
interact with one another, sometimes triggering sequences of earth-
quakes presenting different seismic behaviours (P. Romanet et al.
2018). Since fault slip occurs at depth, direct in-situ measurements
are impossible, and estimates of fault slip histories are inferred from
remote observations, usually recorded at the surface, by solving an

to invert for slip history, as well as the assumptions about the for-
ward problem (P.C. Hansen 1998; I.A. Beresnev 2003; S. Hartzell
et al. 2007; PM. Mai et al. 2016).

In finite-fault inversions, one of the largest sources of uncertainty
arises from the inaccuracy of the Green’s functions (GF), due to
uncertainty about the fault geometry or the medium properties (Y.
Yagi & Y. Fukahata 2008; S. Minson ef al. 2013; Z. Duputel et al.
2014, 2015; T. Ragon ef al. 2018; M. Hallo & F. Gallovi¢ 2020;
F. Ortega-Culaciati et al. 2021). Additionally, the problem is most
often ill-posed, meaning multiple models can explain the observa-
tions equally well (e.g. PC. Hansen 1998; E. Clévédé et al. 2004;
JW.C. Wong et al. 2024), making it difficult to infer the true so-
lution. Ill-posedness is commonly addressed by solving the inverse
problem using regularization, which can result in biased results (F.
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Gallovi¢ & J. Zahradnik 2011; F. Gallovi¢ & J.P. Ampuero 2015; F.
Ortega-Culaciati ef al. 2021).

In problems where the solution is non-unique, it is important
to explore the range of admissible solutions rather than seeking a
single best fit. This can be approached through optimization-based
techniques or probabilistic frameworks. Among these, Bayesian in-
version methods estimate the posterior probability density function
of the model parameters by combining prior knowledge with the
likelihood of the observations for a given model. In practice, this is
done by sampling the model parameter space and obtaining multiple
solutions that are compatible with the observations (e.g. A. Taran-
tola 2005; S. Minson et al. 2013). Posterior distributions allow for
the estimation of parameter uncertainties and the identification of
the most probable solutions, thereby enhancing the reliability of the
interpretations derived from the models. However, the quantifica-
tion of posterior model uncertainties does not necessarily guarantee
the accuracy of the solution (e.g. PM. Mai et al. 2016; C. Twardzik
et al. 2022), especially if modelling assumptions, like the Green’s
functions, are inaccurate.

To address these concerns, synthetic tests are usually employed
(e.g. R'W. Graves & D.J. Wald 2001; T. Okamoto & H. Takenaka
2009; Z. Duputel er al. 2014; M. Hallo & FE. Gallovi¢ 2020; F.
Ortega-Culaciati ef al. 2021; L. Langer et al. 2022). These studies
note that good data fitting with an imperfect GF does not necessarily
guarantee an accurate solution. In some synthetic tests, this is ex-
posed by generating data using a prescribed (ground-truth) source
and a prescribed GF, while doing the source inversion assuming a
different GF. While these approaches provide useful information on
the capabilities and limitations of the source inversion procedure,
they typically rely on overly simplified source models. Laboratory
earthquakes provide a valuable alternative to synthetic tests because
they exhibit greater complexity and variability in rupture behaviour,
which better reflects the diversity seen in natural earthquakes. At the
same time, laboratory experiments are conducted in a well-known
and controlled medium; they reduce the epistemic uncertainties such
as fault geometry and material properties, which affect GF calcu-
lations (T. Okamoto & H. Takenaka 2009; L. Langer et al. 2022)
and inferred slip models (Y. Yagi & Y. Fukahata 2008; S. Minson
et al. 2013; Z. Duputel et al. 2014; T. Ragon et al. 2018). Despite
these major advantages offered by studying laboratory earthquakes,
attempts to apply source inversion methods to experimental data
remain limited (P. Dublanchet et al. 2024).

In this paper, we study the ability to retrieve the spatiotempo-
ral slip of laboratory earthquakes using displacement time-series
obtained from accelerometers located along the fault. This is done
within a Bayesian source inversion framework, which provides not
just one solution but an ensemble of solutions enabling us to eval-
uate the uncertainty of the retrieved model parameters. First, we
examine the inverse problem of retrieving the final slip distribution,
hereafter called static slip inversion. In particular, we investigate
how the choice of GF affects the reliability of the inferred slip
distribution. To this end, we compare two different GF formula-
tions: a simple GF based on analytical solutions for a homogeneous
half-space medium (Y. Okada 1992) and a realistic GF based on
numerical finite element modelling (COMSOL, Inc. 2024) of the
experimental setup. The objective of this comparison is to quantify
how inappropriate boundary condition assumptions affect the in-
version results in our laboratory setup. Secondly, we investigate our
ability to recover the rupture front by inverting for the spatiotem-
poral distribution of slip from near-field displacement time-series
data with a static Green’s function, hereafter called quasi-static slip

inversion. This approach is similar to that of S.E. Minson et al.
(2014), who inverted quasi-static offsets from high-rate GPS data
to characterize the evolving rupture in real time.

2 EXPERIMENTAL PROTOCOL AND
RESULTS

2.1 Experimental setup

Experiments were conducted using the biaxial apparatus, Crak-
dyn, housed at the Géoazur laboratory in Valbonne, France. The
experimental fault is the contact surface between two rectangular
polymethyl methacrylate (PMMA) blocks, measuring 40 x 10 x 1
cm?® and 45 x 10 x 1.8 cm?, respectively. The dimensions of the
fault are 40 x 1 cm? (Fig. 1a).

A normal force, Fy, was applied using three independently con-
trolled vertical pistons (Fy,, Fx, and Fy,), while a shear force,
Fs, was applied via a single horizontal piston. Each piston was
equipped with a dedicated load cell recording at 500 Hz. Both
normal and shear forces were manually regulated using Enerpac
hydraulic pumps capable of achieving oil pressures up to 700 bar.
Loading was applied incrementally in 30-bar steps, increasing both
the nominal normal stress, o°, and the nominal shear stress, 7, at the
pistons [the corresponding load cell records are shown in Figs 1(b)
and (c)]. The loading phase terminated when o reached 120, 130,
140 or 150 bar at all vertical pistons, depending on the experiment,
while 7 reached 190 bar. Hence, the initial stress conditions of the
fault vary as a function of nominal normal stress, such that as ¢ in-
creases, the initial stress ratio, fj, decreases. Here, ‘nominal stress’
refers to the gauge pressure readings from the hydraulic system and
does not directly correspond to the local or average stress along the
fault interface. The load cell data provide a more accurate represen-
tation of average stress. Rupture was initiated by partially unloading
the piston Fy;, until triggering the first event of the experiment to
have control over the rupture size (Figs 1b and c).

During rupture, particle accelerations were recorded using twenty
Briiel & Kjar type 8309 accelerometers with a corner frequency of
56 kHz. These sensors recorded continuously at 2 MHz during the
unloading phase. Thirteen accelerometers were oriented horizon-
tally and seven vertically, positioned approximately 1 cm from the
fault to preferentially measure fault-parallel and fault-perpendicular
accelerations, respectively. Fault slip was measured using ten Philtec
D100-E2H2PQTS optical gap sensors placed across the fault. These
sensors, with a 500 kHz cutoff frequency and a resolution of 0.4
microns, are capable of detecting slip up to 0.5 mm. Sampling was
performed continuously at 2 MHz.

Dynamic rupture propagation was visualized using three high-
intensity light sources to illuminate the sample. Transmitted light
was recorded by a Phantom TMX 6410 high-speed camera, with
cross-polarization achieved using two linear polarizing filters; one
between the light sources and the sample and one between the sam-
ple and the camera. The camera was triggered via an oscilloscope
connected to a piezoelectric sensor mounted on the sample. Images
were captured at 500 kHz with a spatial resolution of 1280 x 32 pix-
els, corresponding to a pixel size of 312 microns. Because PMMA
is birefringent, variations in transmitted light intensity correspond
to changes in local stress, allowing for real-time tracking of rup-
ture evolution using polarized imaging (A. Rosakis ef al. 1999; S.
Nielsen et al. 2010; A. Schubnel et al. 2011; S. Latour et al. 2013,
2024).

9z0z Atenuer g0 uo Jesn sinoT-uesr NIWOHL A 692/2/£8/2064e66/z/v¥z/e10me/1B/woo dno-olwepese//:sdiy woly pepeojumoq



ey

2

(@)

Slip inversion during laboratory earthquakes 3

FN

3

’_‘Q_‘

y
z <«—F
X
2em
!
: .}F Acoustic sensor (o=
Optical Gap Sensor ;
(trigger) Accelerometer(s)
(b) (c)
0.25 0.25
Macroscopic stress Drop

0.20
m—— I
° o 015 m F
5 0 b

8 £

= 2 010 Ey
= I

0.05

0.00

0 10600 20000 30000 40000 50000 60600 70000
Time Index

00 L . - .
0 10000 20000 30000 40000 50000 60000 70000
Time Index

Figure 1. (a) Experimental setup. The contact surface between two PMMA plates form an experimental fault loaded in a biaxial apparatus. A normal load is
applied via three independently controlled vertical pistons, Fy, , Fn, and Fx;. A shear load is applied via a horizontal piston, Fs. Accelerometers and optical
gap sensors are placed along the fault. A high-speed camera (not pictured) triggered by a piezoelectric sensor is used to track the rupture front. (b, ¢) Loading
histories in two experiments: uncalibrated readings of the load cells used to record the applied normal loads and the shear load. (b) The normal and shear loads
are increased in a step-wise manner until the fault is near criticality. Then, one normal piston is unloaded, triggering a dynamic event. Macroscopic stress drop
occurs only in the case with the lowest nominal stress (highest initial stress ratio), indicating that the lack of normal stress barrier allows for complete rupture
propagation (see B. Fryer et al. 2024). (c) Same procedure as (b), except a barrier is created by further increasing the normal load after criticality is initially

reached.

2.2 Data processing

Optical gap sensors were calibrated such that a 5V output corre-
sponded to the maximum displacement specified by the manufac-
turer. The number of operational gap sensors might change due to
their sensitivity to alignment; some sensors may rotate or detach
from the mounting surface during the experiment. Accelerome-
ters were individually calibrated by Briiel & Kjer, enabling direct
voltage-to-acceleration conversion. The acceleration instrument re-
sponse is sufficiently flat over the frequencies relevant to the short
rupture durations of our experiments. Displacement time-series at
the accelerometer locations were obtained by double integration of
the acceleration signals after removing the mean and linear trend; no
filtering was applied. For high-speed imaging, the greyscale inten-
sity of each pixel (ranging from black to white) reflects variations
in transmitted light, which in turn relate to local stress changes

(Fig. 2). A horizontal line of pixels close to the fault was extracted
for 1-D spatial analysis. The mean greyscale value over the first 20
frames was used as a reference. As rupture propagated, evolving
stress states altered pixel intensities, which were then compared to
the reference to generate videograms illustrating rupture dynamics

(e.g. Fig. 2).

2.3 Experimental results

We consider four experiments with different applied o', previously
described in B. Fryer ez al. (2024). In all these experiments, dynamic
rupture nucleated near the location of the partially unloaded piston
(Fny, in Fig. 1). As all experiments were conducted under the same
nominal shear stress of 190 bar, differences in rupture behaviour
can be attributed to variations in nominal normal, which modify
the initial fault criticality. The ratio of the initial stress ratio to
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Figure 2. Results of an experiment with 0 = 140 bar. (a) Blue curves: time evolution of slip recorded by gap sensors; each trace is shifted to the sensor
position. Red lines: gap sensors that were not operational during the experiment. Background greyscale: videogram showing the rupture propagation. (b) Green:
fault-parallel acceleration. Orange: fault-perpendicular acceleration. Each trace is aligned to the sensor position, with positive acceleration to the right and
negative to the left. (c) Green: fault-parallel displacement (obtained by integrating twice the acceleration records). Orange: fault-perpendicular displacement.
to: slip onset; f;: static end time. Grey shaded bands near 7y and #; indicate receiver noise and measurement error, respectively, used to obtain data covariance.

Table 1. Initial stress conditions.

” h
fs
120 0.80
130 0.75
140 0.70
150 0.65

the static friction coefficient, fy/f;, provides a normalized measure
of how close the initial stress condition lies to the peak strength
of the fault. The static friction coefficient, f;, is defined as the
ratio between the shear force and the sum of the three individual
normal forces measured at the onset of slip during regular friction
experiments, without the unloading stage (f; ~ 0.5). The initial
stress ratio, fy, is defined as the ratio between the shear force and the
sum of the three individual normal forces measured on each piston
immediately before initiating the unloading in Figs 1(b) and (c)
that triggers rupture. These forces are measured directly by the load
cells installed on the pistons. Although the stress distribution along
the fault is heterogeneous, this force-based formulation provides
a reasonable estimate of the overall loading conditions and allows
consistent comparison between experiments.

As o increases, the ratio fy/f, decreases in Table 1, indicating
that the fault is progressively farther from its peak strength. Load
cell data show that events with higher- f;, (¢° = 120 and 130 bar)
exhibited clear macroscopic stress drops, whereas events with lower-
fo (6° =140 and 150 bar) did not (Figs 1b and c). Videogram
analysis (Fig. 3) revealed that higher- f;, events propagated across the
entire fault, indicating full rupture, while lower- f;, events arrested
mid-fault. Moreover, rupture velocities are slower for lower- fj, even
in events that reached the fault’s end. The physical explanations of
such changes in rupture properties were discussed in B. Fryer et al.
(2024).

The time-series of true slip by the operational gap sensors con-
firm that slip only occurred at locations traversed by the rupture
front (Fig. 2a). Acceleration amplitudes decreased from right to
left, consistent with the direction of rupture propagation (Fig. 2b).
Displacements derived from acceleration data served as input for
subsequent slip inversion analyses (Fig. 2c).

3 RETRIEVING SLIP HISTORY FROM
LABORATORY DISPLACEMENT DATA

Three ingredients are required to obtain the slip history during
laboratory earthquakes: (1) observations of the rupture process, (2)
a forward model that predicts observations given a prescribed source
and (3) a procedure to search for models that generate predictions
compatible with our observations. In this section, we describe our
choices and settings for these three ingredients.

3.1 Observed data

To infer the laboratory earthquake rupture process, we use displace-
ment time-series from the processing of accelerometer records, as
explained in Section 2.2. These sensors record the motion of the
PMMA block along only one direction. They are glued either par-
allel or perpendicular to the fault to capture both components of the
acceleration (see Fig. 2¢). The onset time, 7y in Fig. 2(c), is manu-
ally selected just before the initiation of slip on the camera. The end
time of the time-series, or static time, z,, is also manually chosen
as the moment when the displacement begins to plateau across all
receivers. The values of 7, in Fig. 2(c) for the four experiments are
1.2, 1.3, 1.2 and 1.2 ms, respectively.

For the static inversion, that is when we aim to obtain only the
final spatial slip distribution, the observations dys are defined as the
total displacement cumulated at each receiver between ¢y and z,, such
that dops = u(?;) — u(ty), where u is the measured displacement (see
Fig. 2¢). The number of data points corresponds to the number of
operational accelerometers and varies slightly between experiments
due to occasional sensor failures: 18, 19, 18 and 19 operational
accelerometers for the four experiments.

For the quasi-static slip inversion, that is, when we aim to obtain
the spatiotemporal evolution of slip, the observations d,,s are the
displacement time-series at each receiver. We downsample the time-
series by a factor of 100 for computational efficiency. The resulting
time-series used as data are shown as black dots in Fig. 2(c). The
total number of observations is the number of receivers multiplied
by the number of retained time-steps, resulting in data dimensions
of:

18 x 25, 19x27, 18 x 25,

0

19 x 25

for the four experiments as o increases, respectively.
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Figure 3. Local displacements (green curves) obtained by integrating acceleration signals that is placed in the receiver locations along the fault. (a) 0% = 120
bar, (b) 6 = 130 bar, (c) 6® = 140 bar, (d) 0 = 150 bar. The photoelasticity images in the background illustrate the evolution of rupture fronts.

3.2 Forward model: computing the Green’s function of
the medium

Both for static and quasi-static slip inversions, we assume a lin-
ear relation between the model parameters m describing fault
slip and the predicted displacements dpq, consistent with linear
elasticity:

dpres = Gm, (1

where the matrix G collects the static GFs describing the elastic
response of the medium to elementary sources.

The GFs are highly sensitive to the material properties and ge-
ometry of the medium, which are often heterogeneous and not fully
constrained (e.g. T. Okamoto & H. Takenaka 2009; Z. Duputel et al.
2014; L. Langer et al. 2022). In addition, there are multiple ways
to compute the GF, each based on different assumptions. While
each has theoretical advantages and limitations, the choice of GF
can introduce systematic biases into inversion results (F. Gallovi¢ &
J.P. Ampuero 2015; PM. Mai et al. 2016). Therefore, selecting an
appropriate formulation is critical but not always straightforward. In
our case, we have a very good knowledge of the medium properties
and the fault geometry. Therefore, we can focus on the differences
that arise when we use a different formulation to calculate G in
eq. (1). We compare two methods to compute displacements due to
fault slip that differ in how they treat boundary conditions. The first
approach uses the analytical solution by Y. Okada (1992) for the dis-
placement field resulting from uniform slip on a rectangular patch (a
rectangular dislocation) within a homogeneous elastic half-space.
The second approach involves finite element simulations using the
software COMSOL Multiphysics (COMSOL, Inc. 2024) and incor-
porating realistic features of the geometry and boundary conditions
of the experimental setup (see Section Al for details). The corre-
sponding G matrices for these two approaches are hereafter denoted
as Gok and Gcop, respectively.

To make the computation in eq. (1) tractable, we discretize the
model in both space and time. For spatial discretization, we simply
subdivide the fault into a finite number of rectangular subfaults,
where the slip distribution is assumed uniform for Goy and tapered
uniform for Geon. The tapered nature of G, Will be discussed
later in this section.

For the time discretization, we use the multi-time-windows
method (A. H. Olson & R.J. Apsel 1982; S.H. Hartzell & T.H.
Heaton 1983), in which slip can only occur within specific time
intervals, each with a fixed duration. During each of these intervals,
we describe the slip rate by a triangular basis function, as illustrated
in Fig.4 By combining multiple basis functions, each delayed by its
half-duration and properly weighted, we define the complete slip-

rate function with the same time-step as the data set. We enforce
positivity of the slip rate coefficients as a prior during sampling (de-
tails provided in Section 3.3). The time integral of such a slip-rate
function yields a slip function that increases monotonically to the
final slip value.

The optimal number of parameters is obtained by applying the
Bayesian Information Criterion (see Section A2). The resulting
number of unknown parameters is 10 for the static inversion (slip
amplitude of 10 subfaults) and 80 for the quasi-static inversion (8
temporal basis function scaling coefficients for each of the 10 sub-
faults), as shown in Fig.A2 Thus, we have fewer model parameters
(10 for static, 80 for quasi-static) than the number of data points
(& 20 for static, ~ 500 for quasi-static), resulting in an overdeter-
mined system.

In both GF approaches, we adopt the same values for fault geom-
etry and material properties, which are well constrained. The fault
is pre-defined, with strike and dip angles set to 90° for all subfaults.
While the rake angle may vary slightly, we assume a constant rake
of 180°, consistent with the right-lateral strike-slip motion inferred
from the orientation of the accelerometer data. The medium is com-
posed of PMMA, which behaves as a homogeneous, isotropic and
linear elastic material under our experimental conditions. The P-
wave velocity, vp, S-wave velocity, vs and density, p, have uniform
values given in Table 2, from which we derive the Lamé parameters
pand A.

Gox appropriately represents natural faulting conditions, where
a single free surface is present. In contrast, laboratory setup is
surrounded by free surfaces. To assess the influence of the frontal
and back free surfaces of the laboratory setup, we evaluated Gog
using both the actual fault width (W =1 cm) and an infinitely
large fault width (W > L). The latter mimics the effect of these
two boundaries on the inverted slip distribution by preventing a
saturation of slip imposed by fault width.

For Gcom, the finite element discretization employed quadratic
Lagrange shape functions for the displacement field, corresponding
to second-order elements with mid-edge nodes. For each subfault,
a single simulation is performed by prescribing slip with an ap-
proximately uniform spatial slip distribution. To suppress boundary
singularities, a symmetric half-cosine taper is applied along the two
cross-strike edges of the rectangular subfaults. This ensures that the
slip smoothly increases from zero to the prescribed uniform value
and then decreases back to zero within a narrow margin of 0.01 cm
in each subfault. A heterogeneous stress loading is considered in
these simulations, with initial stress values listed in Table 3, to make
sure the applied boundary conditions are meaningful. These values
do not affect the result, as the GF represents the displacement field
change resulting solely from fault slip.
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Table 2. Material properties of PMMA

Parameter Value Unit

vp 2700 ms~!
vs 1345 ms™!
p 1100 kgm™3
n p- v% Pa

A o vlz, —2p - vé Pa

Table 3. Initial stress conditions for GF calculation in Comsol

The force variable on piston Applied stress value

Fy, 120 bar
Fy, 120 bar
Fy, 0 bar

Fg 190 bar

The displacements resulting from the two GF approaches differ
significantly, as illustrated in Fig.5 The Okada solution produces
nearly identical displacements for all subfaults, up to a lateral shift.
This spatial invariance is a consequence of the idealized assump-
tions of ahomogeneous elastic half-space. In contrast, the COMSOL
solution exhibits notable spatial variability as a function of sub-
fault location. This variation primarily arises from the presence of
boundaries on the left and right sides of the experimental setup, and
from differences in the thicknesses of the upper and lower PMMA
blocks. Although the difference between the two GF displacements
is minimal at very close distance to any given subfault, it increases
substantially with distance from the source (Figs 5c and f). These

results illustrate the strong sensitivity of Green’s functions to as-
sumptions about geometry and boundary conditions, emphasizing
the need for careful modelling choices.

3.3 Bayesian approach

We perform our inversions using a Bayesian framework, in which
the objective is to estimate the post-PDF of the slip model parame-
ters, m, conditioned on the observed displacement data, d,ys. This
relationship follows directly from Bayes’ theorem:

p(m | dgys) o¢ p(m) p(daps | m), 2

where the prior distribution p(m) is uniform: Z/(—10~%, 500) um
for the final slip in each subfault. The upper bound for slip is
set to 500 pum, approximately five times the maximum observed
fault-parallel displacement. The lower bound is slightly negative,
because allowing a small negative range avoids this boundary effect
and enables more efficient exploration of models with slip am-
plitudes close to zero. The likelihood function p(d,ps | m) is the
probability that the observations d,s are compatible with the model
m. This can be quantified by comparing the observations with the
model’s predictions while accounting for the uncertainties in the
observations. We adopt a Laplacian distribution for the observation

uncertainties:
N
1 ﬁ red
P(dobs | m) = —exp | — | d — P , A3)
E V2C, vCi'

where |-| denotes the L, norm, and C,’ is the square of the stan-
dard deviation of the uncertainty on the data derived from the i-th
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Figure 5. Fault-parallel (a, b) and fault-perpendicular (d, e) displacement fields, calculated for unit slip applied to five different 4 x 1 cm? rectangular subfaults,
namely SF1, SF3, SF6, SF7, SF10, using Gok(a, d) and Gcom(b, €). (¢, f) Relative differences DO‘I‘D;DC“’“‘ for fault-parallel and fault-perpendicular displacements,

respectively, where Dox = Gok(Unitslip) and Dcom = Geom(Unit slip).

receiver. As explained in S.E. Minson & W.H.K. Lee (2014), this
is equivalent to adopting a cost function based on the L, norm in
optimization problems.

The data covariance C, represents the uncertainty in the mea-
sured static displacement. To calculate this, we determine the vari-
ance of the displacement data in two windows of 100 data points,
one immediately after #, (i.e., all data points until #; in the raw
displacement data) and the other one immediately before and af-
ter #,. These windows correspond to the shaded gray regions in
Fig. 2(c). The former reflects the influence of background noise,
whereas the latter accounts for measurement errors associated with
identifying the final displacement. The two variances are then com-
bined to represent the uncertainty of static displacement at each
receiver.

We sample the posterior distribution by the Metropolis algo-
rithm (W.K. Hastings 1970), which is a Markov Chain Monte Carlo
(MCMC) method. This algorithm generates a sequence of sam-
ples by proposing candidate models, then accepting or rejecting

Dcom

them through a criterion based on the posterior probability. Over
time, the sequence converges to the target distribution, allowing us
to approximate the Bayesian solution effectively. We implement a
straightforward Metropolis sampler (Z. Duputel 2024).

4 INVERSION RESULTS

4.1 Static inversion: comparison between Okada- and
COMSOL-based GFs

In this section, we compare the static slip inversion results using the
two GFs formulations, Gox and Geon, introduced in Section 3.2.
We run a static inversion for each experiment. However, only the
experiments conducted at 6° = 140 bars offered the possibility to
confront our inversion results with the direct measurements of the
fault slip recorded by the optical gap sensors. For the remaining
experiments, the optical-gap sensors could not provide reliable slip
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measurements. During those runs, the laser beams were imper-
fectly aligned with their mirrors, leading to signal saturation and,
ultimately, a faulty laser calibration. Because the resulting gap-
sensor data are not trustworthy, we restrict the comparison between
inversion results and direct slip observations to the experiment per-
formed at 0® = 140 bars.

To mitigate sensitivity to the selected initial model, we run 100
independent MCMC chains, each initialized with a random model
drawn from the prior distribution. Each chain consists of 10> steps
and yields an acceptance rate of approximately 0.25 (A. Gelman
et al. 1997). The convergence times depend on the choice of GFs,
thus we have a different burn-in phase for each case. When using
Goy, the first 20 per cent of each chain is discarded as burn-in.
When using Gcom, the burn-in phase is 40 per cent. We also ap-
ply thinning by retaining only every 25th sample in each chain to
promote independence between samples and to reduce the storage
requirement. This results in 8 x 10* samples per chain and 2 x 10°
slip models in total.

Figs 6(a) and (b) shows a comparison of the data fit when us-
ing Goy and Geon. We show the average of the predictions obtained
from a set of randomly sampled slip models after the burning phase.
Regardless of the GFs used, the inversions fit the data well (except
for the perpendicular component at the receiver located at x = 33
cm, which is underestimated by both inversions). The root mean
square error (RMSE) is 2.86 and 3.66 um for the G¢on and Gog
predictions, respectively, while the noise level of the observed data
(standard deviation) is 0.69 pm. This indicates that both predic-
tions are above the noise level, but Ge,py fits the data significantly
better.

Figs 6(c) and (d) shows the average slip profiles and associ-
ated uncertainties derived from the posterior PDF for both inver-
sions. Comparing the results with the ground truth reveals that the
COMSOL-based inversion better reproduces the true slip profile.
On the other hand, the Okada-based results, both for W =1 c¢cm
and W > L, still deviate significantly. Although the W > L as-
sumption yields a better agreement with the true slip distribution
than the =1 cm assumption, the improvement remains lim-
ited. Near x = 33 cm, where the model fit is poor, the COMSOL-
based solution shows increased uncertainty, while the Okada-based
solution with W =1 cm exhibits unrealistically low uncertainty
that does not encompass the true slip value. Moreover, the uncer-
tainty associated with Gy varies with boundary conditions: the
W =1 cm case yields negligible uncertainty, whereas the infinite-
width case produces larger and more physically realistic uncertainty
estimates.

To emphasize the advantage of the sampling algorithm, we com-
pared the analytical and empirical model covariance matrices for
both Gcom and Gog. The empirical covariance matrix is obtained
from the inferred posterior distributions, while the analytical one
is derived under the Gaussian noise assumption in the data (Ap-
pendix A3). As shown in Fig. A3, Gcon generally yields lower
analytical covariances than Goy, whereas Goy exhibits stronger di-
agonal dominance. Although this might suggest that G¢op is more
ill-posed, it captures the physics of the problem more accurately than
Gox. For both GF formulations, the empirical model covariances
are notably larger than the analytical ones. This discrepancy indi-
cates that the linear-Gaussian framework underestimates the true
model uncertainty, especially when the forward problem exhibits
nonlinearities or the posterior distribution deviates from a Gaussian
distribution.

4.2 Quasi-static inversion results using COMSOL-based
GFs

To further challenge the robustness of our inversion methodology,
we also perform quasi-static slip inversions for all four rupture
events (Fig. 3). Since the static results presented above show a
significant deviation of the slip amplitude from ground-truth mea-
surements when using Gog, we do the quasi-static slip inversion
only using Gcon- As outlined in Section 3.2, the model space is 80-
dimensional for quasi-static inversion, which requires more sam-
ples for convergence than the static case. We run 100 independent
MCMC chains with 10° samples each, discarding the first 20 per
cent as burn-in and applying thinning by retaining every 25th sam-
ple.

The spatiotemporal slip distribution is obtained by taking the
average of the posterior PDF (Figs 7a—d). The final time-step cor-
responds to the static slip distribution. As expected, decreasing the
initial ratio ty/0, leads to reduced slip amplitudes and shorter rup-
ture lengths (Figs 7a—d). Additionally, in the ® = 150 bar experi-
ment (Fig. 7d), slip starts later than in other experiments. This delay
likely results from a foreshock that prematurely triggered the data
acquisition system (Fig. 3d), highlighting the temporal sensitivity
of the inversion method.

To obtain the spatiotemporal evolution of the rupture front from
the quasi-static slip inversion, we define the rupture front by a slip
amplitude threshold ranging from 1 per cent to 4 per cent of the
maximum slip. These fronts are then compared with photoelastic
observations (Figs 7e—h). The method retrieves rupture fronts, rup-
ture velocities and features such as acceleration and deceleration.
Minor timing discrepancies, especially at higher normal stress, arise
from the use of finite slip thresholds to define rupture fronts: while
true rupture onset corresponds to zero slip, thresholding introduces
slight delays. Despite this, the inversion reliably recovers rupture
propagation, length and nucleation location, with well-quantified
uncertainty bounds.

For full ruptures (e.g. ¢® = 120 and 130 bar), the inversion ac-
curately captures the observed rupture propagation. For partial rup-
tures (e.g. ° = 140 and 150 bar), it correctly identifies rupture
arrest positions. However, resolution diminishes toward the rupture
tip, where data sensitivity is inherently lower.

In the experiments conducted at ° = 120 and 130 bar, rupture
initiates on the right side of the fault, decelerates near x = 17 cm
and subsequently re-accelerates along the left portion of the fault
(Figs 7i and j). Such rupture complexities, namely the local decel-
eration and re-acceleration of the rupture front, have also been re-
ported in previous studies (S.B.L. Cebry et al. 2023; F. Paglialunga
et al. 2025). These behaviours are likely related to stress hetero-
geneities along the interface, possibly arising from the mechanical
discontinuity between the metal components of the apparatus and
the top PMMA block. Eventually, this asymmetric rupture evolution
produces a two-stage slip pattern clearly resolved in the inversion
results. The first slip phase occurs up to approximately t = 0.75 ms,
followed by a brief interval of quiescence during which slip evo-
lution stagnates. A second slip phase then starts and persists until
around the final time-step #,. Thus, the inversion can reveal rupture
complexity, including transient pauses and rupture deceleration,
consistent with experimental observations (Figs 7e—f). The narrow
uncertainty bounds around the inferred fronts further support the
robustness of rupture arrest detection, confirming that the slip did
not progress beyond the indicated points at the applied thresholds
(Figs 7i-1).
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Figure 6. Comparison of static slip inversion results and their uncertainties using Gcom and Gok. (a, b) Data fitting results using Gcom and Goy for fault-parallel
(Vs) and fault-perpendicular (As) displacement components. (c, d) Comparison of inverted slip distributions with ground-truth slip data from gap sensors
(blue and red rectangles indicate operational and non-operational sensors, respectively, so that blue curve is the ground truth). The dashed lines in (b, d) are
data predictions and inverted model by Gok with infinitely wide subfault assumption (W >> L). Black stars denote the centres of subfaults. Light green curves
represent linearly interpolated slip distributions between these subfault centres, based on the inverted slip model that is the average value of all collected slip
models after burn-in phase. To estimate the uncertainty, we draw randomly 5000 samples from the posterior distribution that we have obtained from the MCMC
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Figure 8. (Bottom) Schematic of the 40 cm fault divided into 10 subfaults (indicated in colours at the bottom). (a—d) Histograms showing the time evolution

of slip in each subfault for the four experiments.

Fig. 8 presents histograms of spatiotemporal slip evolution for
each experiment. In low-stress cases (o = 120, 130), the rup-
ture traverses the whole fault, while in high-stress cases (c° =
140, 150), the rupture arrests mid-fault. Slip variance diminishes
with increasing ¢” due to the constant upper slip bound of 500 um
across all events.

5 DISCUSSION

5.1 Reliability and uncertainty in static and quasi-static
inversion

The non-uniqueness of slip inversions of natural earthquakes stems
from limited knowledge of Earth’s internal structure, simplifying
assumptions in modelling, and observational noise. While synthetic
tests are commonly used to explore the consequences of these limi-
tations, they often lack realism or may introduce biases due to their
reliance on idealized assumptions (I.A. Beresnev 2003). Laboratory
experiments, as in our study, provide a compelling alternative by
offering highly controlled environments where fault geometry and
material properties are well constrained.

This study addresses a central question: can slip inversions using
real laboratory data accurately recover the true slip distribution, in-
dependently recorded during experiments, when the forward model
is nearly fully specified? Our results indicate that, with appropriate
GFs, the spatiotemporal evolution of fault slip can be accurately
reconstructed, even when the rupture is complex.

However, the challenge in slip inversion is not only to estimate
the slip distribution but also to assess the reliability of the inferred
model. Although the Bayesian framework offers a powerful means to
quantify model uncertainty and evaluate model robustness, which is
defined here as the stability of the posterior distribution with respect
to data noise and sampling variability for a fixed forward model,
it does not inherently ensure that the solution is close enough to
the ground truth. In particular, the inversion using G,y reliably
reproduces the true slip distribution, while the inversion using Gog
fails to do so, despite achieving a similar data fit (Figs 5a and b)
and comparable uncertainty estimates (Figs 5¢ and d).

This discrepancy arises because the simplistic Goy, either for
W =1cmor W > L, does not adequately account for the bound-
ary conditions of the problem. As a result, it misrepresents the
spatial distribution of slip and cannot reproduce the true slip pat-
tern. In contrast, G¢om incorporates realistic stress and boundary
conditions, resulting in slip models that closely match independent
ground-truth observations. This highlights a common but critical
pitfall in inversion: inadequate forward models can yield biased yet
overconfident solutions, a phenomenon we refer to as ‘confidence
without accuracy’. Our laboratory setting, in which forward mod-
elling is entirely decoupled from data generation and the ground
truth is independently measured, allows us to unambiguously ex-
pose this issue.

While previous studies have proposed methods to account for
uncertainties in Green’s functions, they have largely focused on
variability in Earth material properties (Z. Duputel ez al. 2014; M.
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Hallo & F. Gallovi¢ 2016; E. Caballero et al. 2023), uncertainties
in fault geometry (T. Ragon et al. 2018) or model parametriza-
tion choices (I. Beresnev 2023). In contrast, our work specifically
addresses how the treatment of geometry and boundary conditions
during the computation of Green’s functions can impact the inferred
slip distributions. Importantly, while the geometry of the fault can
be uncertain and has been rigorously explored in prior work (T.
Ragon et al. 2018), the boundary conditions at the Earth’s surface
are not uncertain: the free surface is a well-constrained physical re-
ality. However, the surface topography is often neglected or simpli-
fied in Green’s function formulations. Studies show that neglecting
the surface topography and the 3-D variation in elastic properties
can significantly bias fault slip models, in subduction zones (C.A.
Williams & L.M. Wallace 2015, 2018; L. Langer et al. 2019), and
continental strike-slip faults (M. Marchandon et al. 2021). Our re-
sults demonstrate that such simplifications, especially omitting the
effects of the free surface or external boundaries, can introduce sys-
tematic modelling biases. This source of epistemic uncertainty is
rarely quantified or even acknowledged.

Although formally capturing this type of modelling uncertainty
remains challenging, some studies have implicitly addressed it by
comparing inversion results obtained under differing Green’s func-
tion assumptions. For instance, J.W.C. Wong et al. (2024) analysed
32 published models of the 2011 Tohoku earthquake to extract
robust slip features. These ensemble-based approaches offer a prac-
tical path toward quantifying uncertainty not only from data, noise
or simplifications of subsurface structure, but also from the mod-
elling choices made in Green’s function construction. The effects of
these choices are often excluded from formal uncertainty quantifi-
cations but can nonetheless critically influence the inversion results.
Nonetheless, it remains essential to validate inversion results using
independent constraints not employed in the inversion itself (S. Das
& B.V. Kostrov 1990). These external benchmarks offer a practical
path for assessing the physical plausibility of inferred slip models
and identifying solutions that are most consistent with reality.

Since a ground truth is not available for real earthquakes, it is not
possible to directly validate our results. Traditionally, discrepancies
between different inversion results have been viewed as problem-
atic, reflecting uncertainty about which solution is correct. However,
especially in light of the realization that the Bayesian framework
(for one inversion with a given GF) may not provide a fully reliable
estimate of uncertainty, these differences in the literature can be
reinterpreted as useful indicators. From this perspective, a variety
of published slip models may not necessarily be viewed as a disad-
vantage. Rather, the diversity of models can serve as a transparent
and practical indicator of the uncertainty and reliability of inferred
results.

5.2 Implications for natural earthquakes

The spatiotemporal distribution of slip provides a kinematic descrip-
tion of earthquake rupture, governing the resulting stress changes,
energy release and seismic moment. Consequently, uncertainties
or biases in inverted slip distributions directly propagate into esti-
mates of key source parameters and can thereby influence broader
interpretations of earthquake mechanics.

In our laboratory study, we observe a pronounced dependence
of the inferred seismic moment on the choice of GF. As shown in
Fig. A4, the seismic moment predicted using Gox is approximately
three times larger than that obtained using Gcon, despite both in-
versions achieving comparable data fits and posterior uncertainty

Slip inversion during laboratory earthquakes 11

spreads. This discrepancy illustrates that modelling assumptions
embedded in the GF can dominate the uncertainty budget, a con-
clusion that echoes findings by Y. Yagi & Y. Fukahata (2008), Z.
Duputel et al. (2014) and M. Hallo & F. Gallovi¢ (2020), who em-
phasized that GF mischaracterization often outweighs data noise as
a leading source of epistemic uncertainty in finite-fault inversion.

This sensitivity to modelling uncertainties has downstream im-
plications. Since the static stress drop is often estimated via
Ao ~ M,/L? for a circular crack of radius L, any bias in M, can
result in an error in the stress drop for a fixed rupture length L. Such
variability may account for part of the scatter in reported stress drops
across studies (F. Cotton et al. 2013; F. Courboulex et al. 2016), par-
ticularly when differing simplification assumptions about medium
properties are made to compute GF. These findings underscore the
importance of carefully validating GF selection when comparing
source parameters across different events.

Beyond scalar estimates like moment and stress drop, our inver-
sions resolve detailed rupture kinematics. Note that the quasi-static
slip inversion approach used in this study neglects elastodynamic
effects such as wave propagation. Despite this simplification, it per-
forms remarkably well in recovering rupture kinematics, including
rupture fronts, velocities and arrest points, in strong agreement with
independent photoelastic observations (Fig. 7). Our results suggest
that the validity of the quasi-static approximation stems primarily
from the nature of the laboratory setting. Ruptures propagate at sub-
Rayleigh speeds, and the sensors are located in the near field, where
static and low-frequency deformation dominate the measured sig-
nal. In this context, the low-frequency sensitivity of the near-field
sensors used in this study is critical for double integration during
data processing, which is necessary for obtaining accurate inversion
results.

When our setup is scaled to natural length scales, the receiver-
fault distance corresponds to a small fraction of the dominant
wavelength, conditions that are commonly encountered in near-
fault recordings of natural earthquakes. For our experiments, the
dominant frequency of the acceleration recordings is approximately
6 kHz, which corresponds to a wavelength of about A}y, ~ 225 mm
for the value of vg in Table 2. The accelerometers are positioned
at 10 mm from the fault, which corresponds to a source-to-receiver
distance of about 0.04 1., while the total rupture length of 400 mm
represents 1.78\,,. This configuration is analogous to near-fault,
low-frequency observations in nature. Using the same scaling, for a
natural earthquake with a dominant frequency around 0.1 Hz and S-
wave velocity between 2.5 and 4 km s~!, the corresponding range of
wavelengths would be Ap,ue = 25—40 km. Thus, our experimental
configuration corresponds to near-fault stations located about 1—
2 km from the fault and a rupture length between 45 and 70 km.
These dimensions are comparable to those of moderate-to-large
earthquakes, such as the 2019 Ridgecrest, 2004 Parkfield, 2016
Amatrice, 2009 L’ Aquila and 2014 Napa Valley events.

Moreover, the PMMA material used in the experiments ex-
hibits relatively high attenuation, which naturally suppresses high-
frequency wave effects. These conditions reduce the contribution
of dynamic wavefields to the observed displacement, allowing the
quasi-static model to capture the essential mechanics of rupture
without explicitly modelling wave propagation. The high spatial res-
olution of the accelerometers and their proximity to the fault further
enhances the effectiveness of the quasi-static inversion. As shown
in Figs 7(e)—(1), even fine-scale features like deceleration zones and
rupture arrests are consistently recovered. Minor timing discrep-
ancies, especially at higher stress levels, are likely attributable to
slip thresholding effects used to define rupture onset rather than
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Figure 9. (a) Comparison of seismic moment versus squared rupture length L2, derived from camera observations at each time-step. Coloured data points
represent values up to the moment rate peak (highlighted in panel b), while grey symbols show subsequent evolution. Marker shapes correspond to different
experimental conditions, as indicated in the legend. Stress drop values at the moment rate peak are also provided in the legend. The stress drop values,
Ao = My/L*W, computed at the time of the first moment rate peak, are also listed in the legend, where /¥ denotes the fault width. (b) Moment rate functions
for the experiments labelled in (a), with consistent colour coding. Black rectangles highlight the peak moment rate for each event. (¢) True rupture front initiation
along the fault (manually picked from photoelastic videograms). Time and position are relative to the rupture initiation point to allow direct comparison of
rupture velocities. Example rupture velocities (0.1-0.92vg) are annotated for reference. The absolute rupture positions and timing are shown in Fig.7

inversion errors. These results support a key assertion of S. Hartzell
et al. (2007): dense nearfield coverage enables robust reconstruc-
tions of rupture dynamics when physically consistent assumptions
are applied. However, this approximation has clear limitations. It
cannot account for elastodynamic stress changes ahead of the rup-
ture front, or any frequency-dependent phenomena. These lim-
itations are particularly relevant for interpreting high-frequency
ground motion, estimating off-fault damage or modelling ruptures
approaching or outpacing the S-wave velocity, involving potentially
strong inertia effects and strong radiated waves that carry a large
portion of the rupture energy.

Finally, our inversion procedure provides a direct estimate of the
seismic moment for each event (Fig. 9a), which can be used to derive
the corresponding moment rate functions (Fig. 9b). Our estimate
of M, highlights that full-rupture events (e.g. o® = 120, 130 bar)
display longer durations and more complex, multistage moment
rate evolutions. In contrast, finite-rupture events (e.g. o° = 140,
150 bar) exhibit shorter and simpler moment rate profiles. Fig. 9(a)
clearly shows that the stress drops at the initial peak of the moment
rate, that is proportional to the slope of the L? versus M, relation,
are similar across the data set. This indicates that the differences
in rupture initiation in our data set are not caused by variations in
stress drop. In addition, contrary to other experimental results (D.
Morad et al. 2025), where the initial slope of the moment rate was
found to scale with the final rupture size, our results show a different
trend. The initial slopes of the moment-rate functions vary across
our four experiments. The finite rupture events (¢° = 140, 150 bar)
terminate at similar rupture lengths, yet their moment-rate functions
initiate with different slopes. Instead, their maximum moment-rate
values correlate with their similar rupture lengths. We note that
the full rupture length events may be limited by the experimental
setup rather than rupture dynamics, and therefore should not be
overinterpreted in terms of final rupture size. The key observation
in our data set is that the initial slope of four events correlates with
their initial rupture velocity: as the slope decreases in Fig. 9(b), the
rupture velocity decreases in Fig. 9(c).

While the limited number of experiments restricts broader gen-
eralization, the consistent relationship between the initial moment

rate slope and rupture velocity is compelling. It points to a po-
tentially scalable approach for estimating rupture kinematics using
near-field displacement data alone, an especially promising avenue
in natural earthquake studies where high-resolution geodetic data,
dense near-field strong-motion records or distributed acoustic sens-
ing (DAS) observations are available. The framework developed in
this study opens the door to a quantitative description of the early
stage of the seismic rupture in the laboratory.

6 CONCLUSION

We show that static and quasi-static inversion methods are ro-
bust tools for imaging fault slip in controlled environments with
dense near-fault data coverage. Yet, the accuracy of the inversion
critically depends on the assumptions embedded in the Green’s
function formulations, particularly those related to boundary con-
ditions and stress heterogeneity, which differ between the Okada
and COMSOL-based GF. When using realistic Green’s functions,
quasi-static inversion methods can successfully recover both the slip
history and the evolution of the rupture front. We also find that the
uncertainty quantification provided by Bayesian inversion is only
meaningful if the forward model accurately reflects the physical
system.

The findings from this laboratory study have important implica-
tions for real-world earthquake source inversion. In natural settings,
key parameters for slip inversion, such as fault geometry and ma-
terial properties, are poorly constrained, which limits the accuracy
of any forward model. There is a circular dependence: accurate
slip inversion requires a reliable GF, but an accurate GF requires
knowledge of fault geometry and boundary conditions. Our results
underscore the value of using the most physics-informed and site-
specific GF available.

Our study also illustrates the strong potential of quasi-static in-
version to reconstruct the rupture history from near-field displace-
ment data alone. With increasingly dense sensor networks, including
DAS and low-cost, high-rate GPS, there is a growing opportunity
to track rupture evolution with high resolution, provided that the
forward modelling is appropriate.
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APPENDIX A:

A1 GF calculation in comsol

The geometry is partitioned into 174392 domain elements, with
refinement around the source and sensors (within 1 cm of the fault
plane) to 0.0015 m. The 4 blocks and 4 cylinders (shown in blue

in Fig. Al), used to transfer the loading and smooth the stress
field, are modelled using steel, which is elastic and characterized
by a Young’s modulus of 2el1 Pa and a Poisson’s ratio of 0.27.
The green regions indicate areas where loading is applied (with
uniform pressure, Py, and Py, = 120 bar, Py, = 0 and Py = 190
bar, as in Table 3). The transparent red regions mark surfaces with
roller boundary conditions (i.e. displacement in the surface normal
direction is fixed at zero, while displacement in the surface-parallel
direction is free). All the other surfaces are treated as free surfaces.
We utilize a thin layer module (spring material) (F. Pulvirenti et al.
2021) to model the dislocation on the subfaults.

A2 Model parametrization

To determine the granularity of the space-time discretization, we
analysed the Bayesian Information Criterion (BIC), defined as:

BIC = kIn(n) — 2In(L) (A1)

where k is the number of unknown parameters, n is the number
of data points and L is the maximum-likelihood value within the
model space (G. Schwarz 1978).

We first determine the spatial discretization of the static-slip
inversion. We run multiple source inversions, with an increasing
number of subfaults ranging from 4 to 25. We set the subfault
width equal to the sample width; thus, we restrict the inversion
to slip fluctuations along strike but not along dip. After each in-
version, we calculate the average likelihood. Using the L-curve
method (B.E. Hansen 1992), we find that 10 subfaults offer the
best compromise between data fitting and model complexity. Each
of these 10 subfaults has a length of 4 cm and a width of 1 cm
(Fig. 4).

For the quasi-static slip inversion, we keep the same spatial
discretization of 10 subfaults. Therefore, we only run the BIC
analysis to determine the number of temporal basis functions that
parametrize the slip rate of each subfault. Based on the BIC anal-
ysis, we find an optimal value of 8 temporal basis functions per
subfault (Fig. A2).

A3 Model covariance matrices

Apart from the inversion process itself, it is possible to analytically
calculate the model covariance matrix for a given linear forward
problem d = Gm assuming Gaussian noise in the data without any
prior information, such that Cy, = (G”C;'G)™!, where Cy is the
data covariance matrix (A. Tarantola 2005).

A4 The uncertainty of predicted seismic moment

The seismic moment for the experiment with 0 = 140 bar is cal-
culated as follows:
10

Mo(r) = ) il Wimi(0), (A2)

i

where L;, W; and m; are the length, width and inverted total slip
amount of the subfault for the ith subfault. The time variable ¢ is
relevant only for quasi-static results. Fig. A4 presents the seismic
moment computed from static inversion results, that is, the total
coseismic slip values for the event with o* = 140 bar.

A5 Moment rate function

We compute M, (¢) numerically by differentiating the cumulative
moment My(#) in eq. (A2) obtained from the slip histories of the
subfaults.
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